Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Nature ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658756

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.

2.
Cell Rep ; 43(4): 114052, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38573860

Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.


Cell Differentiation , Hypertrophy , Macrophages , Mesenchymal Stem Cells , Mice, Knockout , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Granulins , Cell Communication , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Regeneration
3.
Article En | MEDLINE | ID: mdl-38595266

INTRODUCTION: Trauma-related deaths and post-traumatic sequelae are a global health concern, necessitating a deeper understanding of the pathophysiology to advance trauma therapy. Proteomics offers insights into identifying and analyzing plasma proteins associated with trauma and inflammatory conditions; however, current proteomic methods have limitations in accurately measuring low-abundance plasma proteins. This study compared plasma proteomics profiles of patients from different acute trauma subgroups to identify new therapeutic targets and devise better strategies for personalized medicine. METHODS: This prospective observational single-center cohort study was conducted between August 2020 and September 2021 in the intensive care unit of Osaka University Hospital in Japan. Enrolling 59 consecutive patients with blunt trauma, we meticulously analyzed plasma proteomics profiles in participants with torso or head trauma, comparing them with those of controls (mild trauma). Using the Olink Explore 3072® instrument, we identified five endotypes (α-ε) via unsupervised hierarchical clustering. RESULTS: The median time from injury to blood collection was 47 minutes [interquartile range: 36-64 minutes]. The torso trauma subgroup exhibited 26 unique proteins with significantly altered expression, while the head trauma subgroup showed 68 unique proteins with no overlap between the two. The identified endotypes included α (torso trauma, n = 8), ß (young patients with brain injury, n = 5), γ (severe brain injury post-surgery, n = 8), δ (torso or brain trauma with mild hyperfibrinolysis, n = 18), and ε (minor trauma, n = 20). Patients with torso trauma showed changes in blood pressure, smooth muscle adaptation, hypermetabolism, and hypoxemia. Patients with traumatic brain injury had dysregulated blood coagulation and altered nerves regeneration and differentiation. CONCLUSIONS: This study identified unique plasma protein expression patterns in patients with torso trauma and traumatic brain injury, helping categorize five distinct endotypes. Our findings may offer new insights for clinicians, highlighting potential strategies for personalized medicine and improved trauma-related care. LEVEL OF EVIDENCE: Prospective Cohort Study, Level III.

4.
Crit Care ; 28(1): 89, 2024 03 19.
Article En | MEDLINE | ID: mdl-38504320

BACKGROUND: In trauma systems, criteria for individualised and optimised administration of tranexamic acid (TXA), an antifibrinolytic, are yet to be established. This study used nationwide cohort data from Japan to evaluate the association between TXA and in-hospital mortality among all patients with blunt trauma based on clinical phenotypes (trauma phenotypes). METHODS: A retrospective analysis was conducted using data from the Japan Trauma Data Bank (JTDB) spanning 2019 to 2021. RESULTS: Of 80,463 patients with trauma registered in the JTDB, 53,703 met the inclusion criteria, and 8046 (15.0%) received TXA treatment. The patients were categorised into eight trauma phenotypes. After adjusting with inverse probability treatment weighting, in-hospital mortality of the following trauma phenotypes significantly reduced with TXA administration: trauma phenotype 1 (odds ratio [OR] 0.68 [95% confidence interval [CI] 0.57-0.81]), trauma phenotype 2 (OR 0.73 [0.66-0.81]), trauma phenotype 6 (OR 0.52 [0.39-0.70]), and trauma phenotype 8 (OR 0.67 [0.60-0.75]). Conversely, trauma phenotypes 3 (OR 2.62 [1.98-3.47]) and 4 (OR 1.39 [1.11-1.74]) exhibited a significant increase in in-hospital mortality. CONCLUSIONS: This is the first study to evaluate the association between TXA administration and survival outcomes based on clinical phenotypes. We found an association between trauma phenotypes and in-hospital mortality, indicating that treatment with TXA could potentially influence this relationship. Further studies are needed to assess the usefulness of these phenotypes.


Antifibrinolytic Agents , Tranexamic Acid , Wounds and Injuries , Humans , Tranexamic Acid/therapeutic use , Retrospective Studies , Japan/epidemiology , Antifibrinolytic Agents/therapeutic use , Registries , Wounds and Injuries/drug therapy
5.
Cancers (Basel) ; 16(5)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38473420

PURPOSE: Breast cancer tumors frequently have intratumoral heterogeneity (ITH). Tumors with high ITH cause therapeutic resistance and have human epidermal growth factor receptor 2 (HER2) heterogeneity in response to HER2-targeted therapies. This study aimed to investigate whether high HER2 heterogeneity levels were clinically related to a poor prognosis for HER2-targeted adjuvant therapy resistance in primary breast cancers. METHODS: This study included patients with primary breast cancer (n = 251) treated with adjuvant HER2-targeted therapies. HER2 heterogeneity was manifested by the shape of HER2 fluorescence in situ hybridization amplification (FISH) distributed histograms with the HER2 gene copy number within a tumor sample. Each tumor was classified into a biphasic grade graph (high heterogeneity [HH]) group or a monophasic grade graph (low heterogeneity [LH]) group based on heterogeneity. Both groups were evaluated for disease-free survival (DFS) and overall survival (OS) for a median of ten years of annual follow-up. RESULTS: Of 251 patients with HER2-positive breast cancer, 46 (18.3%) and 205 (81.7%) were classified into the HH and LH groups, respectively. The HH group had more distant metastases and a poorer prognosis than the LH group (DFS: p < 0.001 (HH:63% vs. LH:91% at 10 years) and for the OS: p = 0.012 (HH:78% vs. LH:95% at 10 years). CONCLUSIONS: High HER2 heterogeneity is a poor prognostic factor in patients with HER2-positive breast cancer. A novel approach to heterogeneity, which is manifested by the shape of HER2 FISH distributions, might be clinically useful in the prognosis prediction of patients after HER2 adjuvant therapy.

6.
Biosystems ; 235: 105087, 2024 Jan.
Article En | MEDLINE | ID: mdl-37989470

Simultaneous understanding of both population and ecosystem dynamics is crucial in an era marked by the degradation of ecosystem services. Experimental ecosystems are a powerful tool for understanding these dynamics; however, they often face technical challenges, typically falling into two categories: "complex but with limited replicability microcosms" and "highly replicable but overly simplistic microcosms." Herein, we present a high-throughput synthetic microcosm system comprising 12 functionally and phylogenetically diverse microbial species. These species are axenically culturable, cryopreservable, and can be measured noninvasively via microscopy, aided by machine learning. This system includes prokaryotic and eukaryotic producers and decomposers, and eukaryotic consumers to ensure functional redundancy. Our model system exhibited key features of a complex ecosystem: (i) various positive and negative interspecific interactions, (ii) higher-order interactions beyond two-species dynamics, (iii) probabilistic dynamics leading to divergent outcomes, and (iv) stable nonlinear transitions. We identified several conditions under which at least one species from each of the three functional groups-producers, consumers, and decomposers-and one functionally redundant species, persisted for over six months. These conditions set the stage for detailed investigations in the future. Given its designability and experimental replicability, our model ecosystem offers a promising platform for deeper insights integrating both population and ecosystem dynamics.


Ecosystem , Prokaryotic Cells
7.
Entropy (Basel) ; 25(12)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38136504

The increase in ecosystem biodiversity can be perceived as one of the universal processes converting energy into information across a wide range of living systems. This study delves into the dynamics of living systems, highlighting the distinction between ex post adaptation, typically associated with natural selection, and its proactive counterpart, ex ante adaptability. Through coalescence experiments using synthetic ecosystems, we (i) quantified ecosystem stability, (ii) identified correlations between some biodiversity indexes and the stability, (iii) proposed a mechanism for increasing biodiversity through moderate inter-ecosystem interactions, and (iv) inferred that the information carrier of ecosystems is species composition, or merged genomic information. Additionally, it was suggested that (v) changes in ecosystems are constrained to a low-dimensional state space, with three distinct alteration trajectories-fluctuations, rapid environmental responses, and long-term changes-converging into this state space in common. These findings suggest that daily fluctuations may predict broader ecosystem changes. Our experimental insights, coupled with an exploration of living systems' information dynamics from an ecosystem perspective, enhance our predictive capabilities for natural ecosystem behavior, providing a universal framework for understanding a broad spectrum of living systems.

8.
Proc Natl Acad Sci U S A ; 120(1): e2204269120, 2023 01 03.
Article En | MEDLINE | ID: mdl-36574662

T cells differentiate into highly diverse subsets and display plasticity depending on the environment. Although lymphocytes are key mediators of inflammation, functional specialization of T cells in inflammatory bowel disease (IBD) has not been effectively described. Here, we performed deep profiling of T cells in the intestinal mucosa of IBD and identified a CD4+ tissue-resident memory T cell (Trm) subset that is increased in Crohn's disease (CD) showing unique inflammatory properties. Functionally and transcriptionally distinct CD4+ Trm subsets are observed in the inflamed gut mucosa, among which a CD-specific CD4+ Trm subset, expressing CD161 and CCR5 along with CD103, displays previously unrecognized pleiotropic signatures of innate and effector activities. These inflammatory features are further enhanced by their spatial proximity to gut epithelial cells. Furthermore, the CD-specific CD4+ Trm subset is the most predominant producer of type 1 inflammatory cytokines upon various stimulations among all CD4+ T cells, suggesting that the accumulation of this T cell subset is a pathological hallmark of CD. Our results provide comprehensive insights into the pathogenesis of IBD, paving the way for decoding of the molecular mechanisms underlying this disease.


Crohn Disease , Inflammatory Bowel Diseases , Humans , Crohn Disease/metabolism , CD4-Positive T-Lymphocytes/metabolism , T-Lymphocyte Subsets/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Immunologic Memory
9.
J Clin Immunol ; 43(2): 286-298, 2023 02.
Article En | MEDLINE | ID: mdl-36331721

BACKGROUND: COVID-19 is now a common disease, but its pathogenesis remains unknown. Blood circulating proteins reflect host defenses against COVID-19. We investigated whether evaluation of longitudinal blood proteomics for COVID-19 and merging with clinical information would allow elucidation of its pathogenesis and develop a useful clinical phenotype. METHODS: To achieve the first goal (determining key proteins), we derived plasma proteins related to disease severity by using a first discovery cohort. We then assessed the association of the derived proteins with clinical outcome in a second discovery cohort. Finally, the candidates were validated by enzyme-linked immunosorbent assay in a validation cohort to determine key proteins. For the second goal (understanding the associations of the clinical phenotypes with 28-day mortality and clinical outcome), we assessed the associations between clinical phenotypes derived by latent cluster analysis with the key proteins and 28-day mortality and clinical outcome. RESULTS: We identified four key proteins (WFDC2, GDF15, CHI3L1, and KRT19) involved in critical pathogenesis from the three different cohorts. These key proteins were related to the function of cell adhesion and not immune response. Considering the multicollinearity, three clinical phenotypes based on WFDC2, CHI3L1, and KRT19 were identified that were associated with mortality and clinical outcome. CONCLUSION: The use of these easily measured key proteins offered new insight into the pathogenesis of COVID-19 and could be useful in a potential clinical application.


COVID-19 , Humans , Critical Illness , Prognosis , Phenotype , Blood Proteins , Chitinase-3-Like Protein 1
10.
Sci Rep ; 12(1): 16656, 2022 10 05.
Article En | MEDLINE | ID: mdl-36198906

Runt-related transcription factor 2 (Runx2), a regulator of osteoblast differentiation, is pathologically involved in vascular calcification; however, the significance of Runx2 in cardiac homeostasis remains unclear. Here, we investigated the roles of Runx2 in cardiac remodeling after myocardial infarction (MI). The expression of Runx2 mRNA and protein was upregulated in murine hearts after MI. Runx2 was expressed in heart-infiltrating myeloid cells, especially in macrophages, at the border zone of post-infarct myocardium. To analyze the biological functions of Runx2 in cardiac remodeling, myeloid cell-specific Runx2 deficient (CKO) mice were exposed to MI. After MI, ventricular weight/tibia length ratio was increased in CKO mice, concomitant with severe cardiac dysfunction. Cardiac fibrosis was exacerbated in CKO mice, consistent with the upregulation of collagen 1a1 expression. Mechanistically, immunohistochemical analysis using anti-CD31 antibody showed that capillary density was decreased in CKO mice. Additionally, conditioned culture media of myeloid cells from Runx2 deficient mice exposed to MI induced the tube formation of vascular endothelial cells to a lesser extent than those from control mice. RNA-sequence showed that the expression of pro-angiogenic or anti-angiogenic factors was altered in macrophages from Runx2-deficient mice. Collectively, Runx2+ myeloid cells infiltrate into post-infarct myocardium and prevent adverse cardiac remodeling, at least partially, by regulating endothelial cell function.


Myocardial Infarction , Ventricular Remodeling , Animals , Collagen/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Culture Media, Conditioned/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Ventricular Remodeling/genetics
11.
Crit Care ; 26(1): 241, 2022 08 06.
Article En | MEDLINE | ID: mdl-35933364

BACKGROUND: Trauma is a heterogeneous condition, and specific clinical phenotypes may identify target populations that could benefit from certain treatment strategies. In this retrospective study, we determined clinical phenotypes and identified new target populations of trauma patients and their treatment strategies. METHODS: We retrospectively analyzed datasets from the Japan Trauma Data Bank and determined trauma death clinical phenotypes using statistical machine learning techniques and evaluation of biological profiles. RESULTS: The analysis included 71,038 blunt trauma patients [median age, 63 (interquartile range [IQR], 40-78) years; 45,479 (64.0%) males; median Injury Severity Score, 13 (IQR, 9-20)], and the derivation and validation cohorts included 42,780 (60.2%) and 28,258 (39.8%) patients, respectively. Of eight derived phenotypes (D-1-D-8), D-8 (n = 2178) had the highest mortality (48.6%) with characteristic severely disturbed consciousness and was further divided into four phenotypes: D-8α, multiple trauma in the young (n = 464); D-8ß, head trauma with lower body temperature (n = 178); D-8γ, severe head injury in the elderly (n = 957); and D-8δ, multiple trauma, with higher predicted mortality than actual mortality (n = 579). Phenotype distributions were comparable in the validation cohort. Biological profile analysis of 90 trauma patients revealed that D-8 exhibited excessive inflammation, including enhanced acute inflammatory response, dysregulated complement activation pathways, and impaired coagulation, including downregulated coagulation and platelet degranulation pathways, compared with other phenotypes. CONCLUSIONS: We identified clinical phenotypes with high mortality, and the evaluation of the molecular pathogenesis underlying these clinical phenotypes suggests that lethal trauma may involve excessive inflammation and coagulation disorders.


Multiple Trauma , Proteomics , Female , Humans , Inflammation , Injury Severity Score , Male , Phenotype , Retrospective Studies
12.
Nucleic Acids Res ; 50(15): 8779-8806, 2022 08 26.
Article En | MEDLINE | ID: mdl-35902094

Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.


Exosomes , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins , Cell Nucleus/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Cell Stem Cell ; 29(2): 265-280.e6, 2022 02 03.
Article En | MEDLINE | ID: mdl-34856120

Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.


CD47 Antigen , Myoblasts , Animals , CD47 Antigen/metabolism , Hypertrophy/metabolism , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Stem Cells/metabolism
14.
EMBO Rep ; 22(12): e53035, 2021 12 06.
Article En | MEDLINE | ID: mdl-34661337

Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two-photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia-inducible factor activity. We observe that hypoxia decreases ten-eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen-dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.


DNA Demethylation , Osteoclasts , Animals , Cell Differentiation/genetics , Cell Hypoxia , Hypoxia/metabolism , Mice , Osteoclasts/metabolism , Oxygen/metabolism
15.
PeerJ ; 9: e12087, 2021.
Article En | MEDLINE | ID: mdl-34532161

Single-cell RNA-sequencing is a rapidly evolving technology that enables us to understand biological processes at unprecedented resolution. Single-cell expression analysis requires a complex data processing pipeline, and the pipeline is divided into two main parts: The quantification part, which converts the sequence information into gene-cell matrix data; the analysis part, which analyzes the matrix data using statistics and/or machine learning techniques. In the analysis part, unsupervised cell clustering plays an important role in identifying cell types and discovering cell diversity and subpopulations. Identified cell clusters are also used for subsequent analysis, such as finding differentially expressed genes and inferring cell trajectories. However, single-cell clustering using gene expression profiles shows different results depending on the quantification methods. Clustering results are greatly affected by the quantification method used in the upstream process. In other words, even if the original RNA-sequence data is the same, gene expression profiles processed by different quantification methods will produce different clusters. In this article, we propose a robust and highly accurate clustering method based on joint non-negative matrix factorization (joint-NMF) by utilizing the information from multiple gene expression profiles quantified using different methods from the same RNA-sequence data. Our joint-NMF can extract common factors among multiple gene expression profiles by applying each NMF under the constraint that one of the factorized matrices is shared among multiple NMFs. The joint-NMF determines more robust and accurate cell clustering results by leveraging multiple quantification methods compared to conventional clustering methods, which use only a single gene expression profile. Additionally, we showed the usefulness of discovering marker genes with the extracted features using our method.

16.
Nat Commun ; 12(1): 2136, 2021 04 09.
Article En | MEDLINE | ID: mdl-33837198

Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast-osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.


Bone Resorption/drug therapy , Osteogenesis/physiology , Parathyroid Hormone/administration & dosage , Secretory Leukocyte Peptidase Inhibitor/metabolism , Animals , Bone Resorption/pathology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Disease Models, Animal , Female , Femur/cytology , Femur/diagnostic imaging , Femur/drug effects , Femur/pathology , Humans , Male , Mice , Mice, Knockout , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Primary Cell Culture , RNA-Seq , Secretory Leukocyte Peptidase Inhibitor/genetics , Up-Regulation/drug effects , X-Ray Microtomography
17.
Transl Oncol ; 14(2): 100986, 2021 Feb.
Article En | MEDLINE | ID: mdl-33340887

Recent studies demonstrated that homologous repair deficiency (HRD) score is a useful marker for response to poly (ADP-ribose) polymerase inhibitors or platinum-based chemotherapy. We determined HRD scores and elucidated the clinicopathologic characteristics of HRD-high tumors and their response to non-platinum-based chemotherapy. Primary breast cancer patients (n = 120) were pre-operatively treated with paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC). Germline and somatic homologous recombination related gene mutations (gHRRm and sHRRm, respectively) and HRD scores were analyzed using whole exome sequencing (WES) in tumor tissues obtained before chemotherapy. Of 120 tumors, 30 were determined to be HRD-high tumors, significantly associated with high Ki-67 (P = 0.014), ER negativity (P = 0.007), and PR negativity (P = 0.021). Triple-negative cancers showed significantly higher HRD scores than the luminal, luminal-HER2, and HER2 subtypes (P = 0.023, 0.016, and 0.033, respectively). HRD scores were significantly higher in tumors with gHRRm than in those with sHRRm (P = 0.002) or wild-type HRR genes (P = 1.44e-4), but no significant difference was found in HRD scores between tumors with sHRRm and wild-type HRR genes (P = 0.206). HRD-high tumors had significantly (P = 0.003) higher pCR rates and higher near-pCR rates (P = 0.049) compared with those of the HRD-low tumors in all tumors and the luminal subtype, respectively. HRD-high tumors were associated with aggressive phenotypes and gHRRm, but not sHRRm. Our findings suggested that HRD scores might be useful in predicting response to P-FEC in the luminal subtype.

18.
Stem Cells ; 39(3): 306-317, 2021 03.
Article En | MEDLINE | ID: mdl-33295098

Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.


Calcium-Binding Proteins/metabolism , Muscle, Skeletal/metabolism , Receptors, Calcitonin/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Differentiation/physiology , Cell Division/physiology , Cell Proliferation/physiology , Mice, Inbred C57BL , Mice, Transgenic , Stem Cells/metabolism
19.
Sci Rep ; 10(1): 15531, 2020 09 23.
Article En | MEDLINE | ID: mdl-32968121

Linking genetic information to population fitness is crucial to understanding living organisms. Despite the abundant knowledge of the genetic contribution to growth, the overall patterns/features connecting genes, their expression, and growth remain unclear. To reveal the quantitative and direct connections, systematic growth assays of single-gene knockout Escherichia coli strains under both rich and poor nutritional conditions were performed; subsequently, the resultant growth rates were associated with the original expression levels of the knockout genes in the parental genome. Comparative analysis of growth and the transcriptome identified not only the nutritionally differentiated fitness cost genes but also a significant correlation between the growth rates of the single-gene knockout strains and the original expression levels of these knockout genes in the parental strain, regardless of the nutritional variation. In addition, the coordinated chromosomal periodicities of the wild-type transcriptome and the growth rates of the strains lacking the corresponding genes were observed. The common six-period periodicity was somehow attributed to the essential genes, although the underlying mechanism remains to be addressed. The correlated chromosomal periodicities associated with the gene expression-growth dataset were highly valuable for bacterial growth prediction and discovering the working principles governing minimal genetic information.


Chromosomes, Bacterial/genetics , Escherichia coli/genetics , Gene Expression , Gene Expression Regulation, Bacterial/genetics , Gene Knockout Techniques , Periodicity
20.
Sci Rep ; 10(1): 13480, 2020 08 10.
Article En | MEDLINE | ID: mdl-32778803

There have been many attempts to visualize the inflamed joints using multiphoton microscopy. However, due to the hypervascular and multilayered structure of the inflamed synovium, intravital imaging of the deep synovial tissue has been difficult. Here, we established original intravital imaging systems to visualize synovial tissue and pathological osteoclasts at the pannus-bone interface using multiphoton microscopy. Combined with fluorescence-labeling of CTLA-4 Ig, a biological agent used for the treatment of rheumatoid arthritis, we identified that CTLA-4 Ig was distributed predominantly within the inflamed synovium and bound to CX3CR1+ macrophages and CD140a+ fibroblasts 6 h after injection, but not to mature osteoclasts. Intravital imaging of blood and lymphatic vessels in the inflamed synovium further showed that extravasated CTLA-4 Ig was immediately drained through lymphatic vessels under acute arthritic conditions, but the drainage activity was retarded under chronic conditions. These results indicate that this intravital synovial imaging system can serve as a platform for exploring the dynamics of immune cells, osteoclasts, and biological agents within the synovial microenvironment in vivo.


CTLA-4 Antigen/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Synovial Fluid/diagnostic imaging , Abatacept/pharmacology , Animals , Arthritis, Rheumatoid/pathology , Bone Resorption/pathology , Bone and Bones/metabolism , Female , Intravital Microscopy/methods , Lymphatic Vessels/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy/methods , Osteoclasts/metabolism , Synovial Fluid/metabolism , Synovial Membrane/diagnostic imaging , Synovial Membrane/metabolism
...